Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

B. Thimme Gowda,^a* Jozef Kozisek,^b Miroslav Tokarčík^c and Hartmut Fuess^d

^aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, ^bDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^cDepartment of Chemical Physics, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic, and ^dInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany

Correspondence e-mail: gowdabt@yahoo.com

Key indicators

Single-crystal X-ray study T = 299 KMean σ (C–C) = 0.005 Å R factor = 0.041 wR factor = 0.102 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The conformation of the N–H bond is *anti* to the *meta*-methyl substituent in the structure of the title compound, $C_{12}H_{17}NO$, in contrast to the *ortho*-methyl-substituted amide.

2,2,2-Trimethyl-N-(3-methylphenyl)acetamide

Received 15 March 2007 Accepted 22 March 2007

Comment

In the present work, the structure of *N*-(3-methylphenyl)-2,2,2-trimethylacetamide, (I) (3MPTMA), has been determined as part of a study on the systematization of the crystal structures of *N*-aromatic amides (Gowda, Kozisek & Fuess, 2006; Gowda, Shilpa & Jayalakshmi, 2006; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kozisek, Tokarcik & Fuess, 2007). In 3MPTMA, the conformation of the N-H bond is *anti* to the *meta*-methyl substituent (Fig. 1), in contrast to the *syn* conformation observed for the corresponding *ortho*-methyl-substituted amide (Gowda *et al.*, 2007*b*). The geometric parameters in the two amides are similar, except for the C11-N1-C1 bond angle [124.9 (3)° in 2MPTMA and 127.1 (2)° in 3MPTMA] and the dihedral angles between the benzene ring and the C11-N1-C1-O1-C2 acetamide fragment [55.5 (2)° in 2MPTMA) and 33.0 (1)° in 3MPTMA].

The molecules of 3MPTMA are linked through $N-H\cdots O$ hydrogen bonds (Table 1), forming chains running along the *c* axis (Fig. 2).

Figure 1

The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius.

© 2007 International Union of Crystallography All rights reserved

Experimental

The title compound was prepared according to a literature method (Gowda, Shilpa & Jayalakshmi, 2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda, Shilpa & Jayalakshmi, 2006). Single crystals of the title compound were obtained from an ethanol solution and used for this X-ray diffraction study at room temperature.

V = 1172.2 (2) Å³

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

7344 measured reflections

1215 independent reflections

765 reflections with $I > 2\sigma(I)$

T = 299 (2) K 0.5 × 0.15 × 0.15 mm

 $R_{\rm int} = 0.075$

Z = 4

Crystal data

C ₁₂ H ₁₇ NO
$M_r = 191.27$
Orthorhombic, Pca2 ₁
a = 10.7530 (10) Å
b = 10.8059 (10) Å
c = 10.0883 (11) Å

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{min} = 0.962, T_{max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	1 restraint
$wR(F^2) = 0.103$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$
1215 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
127 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7-H7\cdots O6^{i}$	0.86	2.12	2.954 (3)	164
Symmetry code: (i)	$-x \pm 1$ $y = \pm 1$			

Symmetry code: (i) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

All H atoms were positioned geometrically and treated as riding with C-H = 0.93 Å (aromatic) or 0.96 Å (CH₃) and N-H = 0.86 Å, with $U_{iso}(H) = 1.2U_{eq}(CH \text{ or NH})$ and $U_{iso}(H) = 1.5U_{eq}(CH_3)$.

In the absence of significant anomalous scattering, Friedel pairs were merged.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997) *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

Figure 2

Partial packing view, showing the N-H···O hydrogen bonds linking the molecules into a chain. H bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) $\frac{1}{2} - x$, y, $\frac{1}{2} + z$]

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany, for additional terms of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (Grant No. 1/2449/05).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588– 594.
- Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
- Gowda, B. T., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2007). Acta Cryst. E63, 01983–01984.
- Gowda, B. T., Shilpa & Jayalakshmi, K. L. (2006). Z. Naturforsch. Teil A, 61, 595–599.
- Oxford Diffraction (2003). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Oxford Diffraction (2006). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.